High Performance Computing with a Conservative Spectral Boltzmann Solver

نویسندگان

  • Jeffrey R. Haack
  • Irene M. Gamba
چکیده

We present new results building on the conservative deterministic spectral method for the space inhomogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a twostep process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. We extend this method to second order accuracy in space and time, and explore how to leverage the structure of the collisional formulation for high performance computing environments. The locality in space of the collisional term provides a straightforward memory decomposition, and we perform some initial scaling tests on high performance computing resources. We also use the improved computational power of this method to investigate a boundary-layer generated shock problem that cannot be described by classical hydrodynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann Transport Equation for Variable Hard Potential (VHP) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computing is reduced to a separate integral over the unit sp...

متن کامل

Conservative Deterministic Spectral Boltzmann Solver near the grazing collisions limit

We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A cons...

متن کامل

A fast conservative spectral solver for the nonlinear Boltzmann collision operator

We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The e...

متن کامل

Computations of Hypersonic Flow of a Diatomic Gas in Rotational Non-Equilibrium past 3D Blunt Bodies Using the Generalized Boltzmann Equation

Direct methods for solving the generalized Boltzmann equation are advanced by simulating flow past threedimensional immersed bodies in diatomic nitrogen in rotational-translational non-equilibrium. The simulations are performed by solving the entire domain with the generalized Boltzmann equation using a solver based upon the conservative discrete ordinates method of Tcheremissine. Coarse and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012